Exercise 82

(a) Graph the function $f(x)=x-2 \sin x$ in the viewing rectangle $[0,8]$ by $[-2,8]$.
(b) On which interval is the average rate of change larger: $[1,2]$ or $[2,3]$?
(c) At which value of x is the instantaneous rate of change larger: $x=2$ or $x=5$?
(d) Check your visual estimates in part (c) by computing $f^{\prime}(x)$ and comparing the numerical values of $f^{\prime}(2)$ and $f^{\prime}(5)$.

Solution

Part (a)

Below is a graph of $f(x)$ versus x on the specified viewing window.

Part (b)

Draw secant lines through the points on the curve at $x=1$ and $x=2$ and $x=2$ and $x=3$.

Because the slope of the secant line over $[2,3]$ is larger, the average rate of change over $[2,3]$ is larger.

Part (c)

Draw tangent lines through the points on the curve at $x=2$ and $x=5$.

Because the slope of the tangent line at $x=2$ is larger, the instantaneous rate of change at $x=2$ is larger.

Part (d)

Take the derivative of $f(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}(x-2 \sin x) \\
& =\frac{d}{d x}(x)-\frac{d}{d x}(2 \sin x) \\
& =1-2 \cos x
\end{aligned}
$$

Plug in $x=2$ and $x=5$.

$$
\begin{aligned}
& f^{\prime}(2)=1-2 \cos 2 \approx 1.83229 \\
& f^{\prime}(5)=1-2 \cos 5 \approx 0.432676
\end{aligned}
$$

Indeed, the slope of the tangent line at $x=2$ is more than four times larger than that at $x=5$.

